23 research outputs found

    Sterility and Gene Expression in Hybrid Males of Xenopus laevis and X. muelleri

    Get PDF
    BACKGROUND: Reproductive isolation is a defining characteristic of populations that represent unique biological species, yet we know very little about the gene expression basis for reproductive isolation. The advent of powerful molecular biology tools provides the ability to identify genes involved in reproductive isolation and focuses attention on the molecular mechanisms that separate biological species. Herein we quantify the sterility pattern of hybrid males in African Clawed Frogs (Xenopus) and apply microarray analysis of the expression pattern found in testes to identify genes that are misexpressed in hybrid males relative to their two parental species (Xenopus laevis and X. muelleri). METHODOLOGY/PRINCIPAL FINDINGS: Phenotypic characteristics of spermatogenesis in sterile male hybrids (X. laevis x X. muelleri) were examined using a novel sperm assay that allowed quantification of live, dead, and undifferentiated sperm cells, the number of motile vs. immotile sperm, and sperm morphology. Hybrids exhibited a dramatically lower abundance of mature sperm relative to the parental species. Hybrid spermatozoa were larger in size and accompanied by numerous undifferentiated sperm cells. Microarray analysis of gene expression in testes was combined with a correction for sequence divergence derived from genomic hybridizations to identify candidate genes involved in the sterility phenotype. Analysis of the transcriptome revealed a striking asymmetric pattern of misexpression. There were only about 140 genes misexpressed in hybrids compared to X. laevis but nearly 4,000 genes misexpressed in hybrids compared to X. muelleri. CONCLUSIONS/SIGNIFICANCE: Our results provide an important correlation between phenotypic characteristics of sperm and gene expression in sterile hybrid males. The broad pattern of gene misexpression suggests intriguing mechanisms creating the dominance pattern of the X. laevis genome in hybrids. These findings significantly contribute to growing evidence for allelic dominance in hybrids and have implications for the mechanism of species differentiation at the transcriptome level

    Interaction of PP2A catalytic subunit with Rb2/p130 is required for all-trans retinoic acid suppression of ovarian carcinoma cell growth.

    No full text
    All-trans retinoic acid (ATRA) treatment causes CAOV3 ovarian carcinoma cells to growth arrest in the G0/G1 phase and to elevate the level of Rb2/p130 protein. PP2A, a serine/threonine phosphatase, binds and dephosphorylates Rb2/p130, thereby increasing the half-life of Rb2/p130 in the cell. In order to further characterize the interaction between Rb2/p130 and PP2A upon ATRA treatment, we examined the posttranslational modification of PP2A. ATRA treatment leads to hypophosphorylation of PP2A catalytic subunit (PP2Ac) that correlates with increased PP2A activity. In addition, the N-terminus of PP2Ac binds directly to NLS sequences located in the C-terminus of Rb2/p130. Furthermore, CAOV3 cells transfected with a truncated Rb2/p130 construct consisting of only the wt C-terminus grew more aggressively and were less sensitive to ATRA treatment when compared to parental CAOV3 cells. In contrast, CAOV3 cells transfected with a truncated Rb2/p130 construct consisting of only the C-terminus in which the NLS sites were mutated and which could not interact with PP2A, were as sensitive to ATRA treatment as parental CAOV3 cells. These studies suggest that ATRA treatment suppresses the growth of CAOV3 cells via a novel posttranscriptional mechanism involving PP2A

    The Jun family members, c-Jun and JunD, transactivate the human c-myb promoter via an Ap1-like element.

    No full text
    The c-myb protooncogene, which is preferentially expressed in hematopoietic cells at the G1/S boundary of the cell cycle, encodes a transcriptional activator that functions via DNA binding. The regulatory mechanisms governing this specific pattern of expression are not fully understood, although human c-myb expression appears to be positively autoregulated via myb-binding sites in the 5'-flanking region of the c-myb gene (Nicolaides, N. C., Gualdi, R., Casadevall, C., Manzella, L., and Calabretta, B. (1991) Mol. Cell. Biol. 11, 6166-6176). To determine the contribution of other transcription regulators such as JUN family members in the control of c-myb expression, transient expression assays were carried out which revealed a 6- to a 15-fold enhancement by c-Jun and JunD, but not JunB, in chloramphenicol acetyltransferase reporter gene expression driven by different segments of the human c-myb 5'-flanking region. An Ap1-like element located at nucleotide -149 from the c-myb initiation site appears to be required for this transactivation upon binding to a nuclear protein complex containing c-Jun and JunD, since site-directed mutations of this Ap1-like element abolished c-Jun and JunD binding and transactivation. Exposure of phytohemagglutinin-stimulated peripheral blood mononuclear cells to c-jun and junD antisense oligodeoxynucleotides resulted in a 46 and 43% inhibition of T-lymphocyte proliferation that was accompanied by a decrease in c-myb mRNA levels as compared with sense-treated cultures. Because T-lymphocytes induced to proliferate express c-jun and junD before c-myb, these data suggest a mechanism whereby c-Jun and JunD contribute to the transcriptional activation of c-myb that, in turn, is maintained at the G1/S transition and during S phase by positive autoregulation

    Expression of c-myc and induction of DNA synthesis by platelet-poor plasma in human diploid fibroblasts.

    No full text
    When WI-38 human diploid fibroblasts become confluent, they stop synthesizing DNA and dividing. Addition of serum causes the quiescent cell to reenter the cell cycle. Prolonged quiescence after confluence decreases and delays the response to serum. For a few days after reaching confluence, WI-38 cells also respond to platelet-poor plasma. During this period, although not cycling, WI-38 cells still express c-myc and other growth-regulated genes, as measured by steady-state RNA levels. If the quiescence is prolonged further, c-myc expression (and that of two other growth-regulated genes) is no longer detectable, and its disappearance coincides with a loss of response to platelet-poor plasma. These results suggest that, also under physiological conditions, the expression of c-myc and other growth-regulated genes can cooperate with platelet-poor plasma in inducing cellular DNA synthesis in human diploid fibroblasts

    Frequent loss of pRb2/p130 in human ovarian carcinoma.

    No full text
    PURPOSE: RB2/p130, a member of the retinoblastoma gene family, maps to human chromosome 16q12.2, a region in which deletions have been found in several human neoplasms including breast, prostatic, and ovarian carcinoma. We sought to evaluate pRb2/p130 protein expression and function in ovarian carcinoma. EXPERIMENTAL DESIGN: pRb2/p130 expression was detected by immunohistochemical and Western blot analyses in 45 primary ovarian carcinoma samples. RESULTS: Immunohistochemical analysis revealed loss or decrease of pRb2/p130 expression in 18 cases (40%). pRb2/p130 expression was mostly nuclear and inversely correlated to the tumor grade (P < 0.05). Western blot analysis correlated with immunohistochemical expression. Reverse transcription-PCR followed by Southern blot analysis was performed on a representative set of 20 ovarian carcinomas. RB2/p130 mRNA levels were consistent with protein expression. We found a significant increase in the percentage of G(1)-phase-arrested cells in CAOV3 and A2780 ovarian carcinoma cell lines after transduction with an adenovirus carrying the RB2/p130 gene (Ad-CMV-RB2/p130). CONCLUSIONS: These data indicate that loss or decrease of pRb2/p130 expression is a frequent event in ovarian carcinoma and is regulated mostly at the transcriptional level. Moreover, pRb2/p130 overexpression is able to arrest cell growth in ovarian carcinoma cells, suggesting the putative role of pRb2/p130 as a tumor suppressor in this malignancy
    corecore